1. Az ábrát a vastag vonal mentén kettévágjuk, majd a ket darabot egymára tesszük. Az O betűre az Ü betűt, a V betűre Y betűt kerül úgy, hogy a betüket tartalmazó négyzetek pontosan fedik egymást. Melyik betűt kerül a G betűre?
(A) A (B) E (C) G (D) R (E) S

2. Egy 5 m hosszú mérföldszag elejéről leszakadt egy darab. Ezzel a szalaggal a távolgurulékenyen úgy mérték a 20 cm-mal kisebb beosztását írjuk fel az elugrási pontjára. Így a szalag 360 cm-es beosztása jelezte, hogy a Peti moddig ugrott. Hány centiméter hosszú volt Peti ugrása?
(A) 340 (B) 350 (C) 370 (D) 380 (E) 480

3. Van egy kék tó a fák alatt. A tőben békák élnek, mindegyikük pontosan két testvérével. Egyik este a békák közül egYESzerre 7 békét keletkezett. Hány békál a tóban, ha azok száma a lehető legkisebb?
(A) 7 (B) 9 (C) 12 (D) 14 (E) 21

4. Dorka és Dia a 32 fős 10.a osztályba járnak. Dorka 10 osztálytársának telefonát a téli szünetben, Dia pedig Dorka kivételével minden osztálytársával beszélt telefonon. Hány olyan gyerek van a 10.a osztályban, akivel Dia és Dorka beszél?
(A) 9 (B) 10 (C) 20 (D) 30 (E) 31

5. Az a, b, c nemnegatív egész számokra teljesül, hogy $3 \cdot 10^5 + 5 \cdot 10^b + 7 \cdot 10^c = 5073$. Mennyi az $a+b+c$ összeg?
(A) 4 (B) 5 (C) 6 (D) 7 (E) Ezekből az adatokból nem lehet meghatározni.

6. A 19 az 1 húján 20. Hány húján 20 az 1?
(A) -21 (B) -20 (C) -19 (D) 19 (E) 21

7. Hány fok lehet egy háromszög legkisebb szögeinek a nagysága, ha az a lehető legnagyobb?
(A) 30 (B) 45 (C) 60 (D) 90 (E) 100

8. Az egy számtól azonos fénykép készült. Az ábrán mindig egy fényképet egy-egy darabja látható. Hány jegyv volt a szám, ha a lehető legkisebb számjegyből állít?
(A) 0 (B) 1 (C) 2 (D) 3 (E) Ez nem lehet meghatározni.

9. Őt különböző természeti szám összege 13. Mennyi az Őt szám sorozata?
(A) 0 (B) 10 (C) 24 (D) 120 (E) 2011

10. Egy tégla alapú papírlapot egységnyi oldalú négyzetekre osztottuk, majd az ábra szerinti súlydobokra szét daraboljuk. Hány egység az eredeti tégla alap területe?
(A) 20 (B) 22 (C) 24 (D) 26 (E) 28

11. A 2011 olyan négyjegyű szám, amelyen az eszek és százások helyén álló számjegyek összege, valamint a tízesek és egyesek helyén álló számjegyek összege is 2. Hány olyan négyjegyű pozitív egész szám van, amelyen az eszek és százások helyén álló számjegyek összege, valamint a tízesek és egyesek helyén álló számjegyek összege is 10?
(A) 18 (B) 22 (C) 24 (D) 90 (E) 104

12. Egy szabályos háromszögbe az oldalait érintő kör rajzoltuk, majd a körvonalon kívülzsszuk három pontot, szakaszokkal összekötöttük azokat, és megint szabályos háromszöget kapunk (lásd ábra). Mennyi a nagy és a kis háromszög oldalai hosszának aránya?
(A) 2:1 (B) 3:2 (C) 5:3 (D) 4:1 (E) Ezekből az adatokból nem lehet meghatározni.

13. Sárnik négyféle, azonos alapú, négyzetes oszlop alakú, különböző magaságú épületetem van, mindenképpen 4 darab. Az épületérem szénei nagyság szerinti emelkedő sorrendben: fehér, kék, piros, zöld. (Az azonos magasságú elemek azonos színek.) A 16 elemet elhelyezve egy 4x4-es négyzetrétegen úgy, hogy minden sorba és minden oszlopra egyet-egyet tett a különböző magasságtartományok. Minden sor és minden oszlop mindössze végére adhatja, hogy mennyi nézve abban a sorban vagy oszlopból hány különböző színű épület alakzik látszik (lásd ábra). Milyen színű elemet tett Sári a szürke színnel jelölt négyztet? (A magasabb elemuk jobbról oldalasabb, de az alacsonyabbabb megérthető látszik a magasabb.)
(A) fehér (B) kék (C) piros (D) zöld

14. Hányosz annyil olyan háromszög pozitív egész szám van, amelyben szerepel prím számjegy, mint olyan, amelyen nem szerepel?
(A) 1 (B) 2 (C) 3 (D) 4 (E) 6

15. Az ABCDEFGHIJ szabályos tizszög alakú kert valamelyik csúcsán kicsi rejtvén. A kiskerecsnél képén látható őt állítás közül az egyik hamis. Melyik a hamis állítás?
(A) A kicsi közélebb van A-hez, mint C-hez (B) A kicsi közélebb van I-hez, mint B-hez (C) A kicsi közélebb van H-hez, mint I-hez (D) A kicsi közélebb van C-hez, mint E-hez (E) A kicsi közélebb van H-hez, mint F-hez

16. Az $1 \cdot 2 \cdot 3 \cdot \ldots \cdot 99 \cdot 100$ törtben végezzük el az összes lehetséges egyszerűsítést! Milyen a tört neve?
(A) 1 (B) 2 (C) 3 (D) 4 (E) 6

17. Hány oldalú szabályos sokszög részele látható az ábrán, ha az $ABD=120$°?
(A) 8 (B) 10 (C) 12 (D) 14 (E) 16

18. Ha egy szám 60 százalékából 60-at kivonunk, akkor 60-nál nagyobb számot kapunk, mintha a számból vontuk volna ki annak 60 százalékát. Hány százaléka az eredeti számnak 60?
(A) 10 (B) 20 (C) 30 (D) 60 (E) 100

19. Egy kör alakú, tiz részre osztott tábla három részében kezdetleg 6 kavicik van (lásd ábra). A tábla melletti halomba ráteszünk egyszerre egy-egy kavicst két egymás melletti részre, majd ezt többször megismétlünk azért, hogy mind a tiz részben ugyanannyi kavicst legyen. Hány kavicst lesz akkor a táblán, amikor mind a tiz részben ugyanannyi lesz, és a táblán lévő kavicsozszáma a lehető legkisebbvá válhat?
(A) 30 (B) 40 (C) 50 (D) 60 (E) Soha nem lesz ugyanannyi kavicst mind a tiz részbén.

20. Zénő és Zoli a maradékos osztást gyakorolják. Ugyanaz a számot osztják el, Zénő 7-tel, Zoli pedig 8-cal. Minden maradékos kapott Zénő, ha az általa kapott hányados és a Zoli által kapott maradék összege 9?
(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

21. Az a egy olyan pozitív egész szám, amelyre teljesülnek a $2a=\alpha$, $a+y=\alpha$ és $az+y=\alpha$ egyenlősségek. Mennyi az $x+y+z$ összeg, ha az a lehető legnagyobb?
(A) -12 (B) -10 (C) 0 (D) 10 (E) Tetszőlegesen nagy lehet az összeg.