BOLYAI JÁNOS MEGYEI MATEMATIKAVERSENY feladatai, 1995/96. tanév

A szakközépiskolák és a gimnáziumok 1. osztálya,
a nyolcosszabásos gimnáziumok 5. osztálya,
a hatosszabásos gimnáziumok 3. osztálya számára.

A függvénytáblázaton kívül más könyv nem használható, kalkulátor használható,
számítógép nem használható!
A feladatok megoldását kellően indokolni szükséges!
Ügyeljünk az áttekinthető külalakra!
időtarim 2 óra 30 perc

1. Egy futár az A pontból a B-be megy állandó sebességgel. Bizonyos idő után a már megtett út úgy aránylik a még megtettő úthoz, mint 2:3. Ha a futár még megtesz 10 kilometert, a már megtett út és a még hátralevő út aránya 6:5. Mekkora utat kell összesen megtenni a futárnak, míg A-ból B-be jut?
6 pont

2. Egy egységnyi területű ABC háromszögben az ABC szög 30°, az ACB szög 60°. A BC szakasz felezőponjtja F. Osszuk fel az AB szakaszt 3 egyenlő részre. Az osztópontokat jelölje D és E. Hányadrésze a DEF háromszög területe az ABC háromszög területének?
6 pont

3. Öt gyerme az alábbi kijelentéseket teszi:
András: Fiútestvérem hegedül.
Bea: Pontosan két testvérem van.
Csaba: Nincs fiútestvérem.
Dóra: Fiútestvérem első az osztályban.
Enő: Leánytestvérem szereti a matematikát.
Feltéve, hogy mindenki igazat mondott, és az állítások az öt gyerekre vonatkoznak, állapítsuk meg, hogy közülük kik testvérek!
8 pont

4. Kati 1980-ban éppen annyi éves volt, mint születési éve számjegyeinek az összege. Melyik évben született Kati?
8 pont

5. Egy négyszög átlói merőlegesek egymásra, és a négyszög egymás utáni oldalai rende 10, 14, 11 egység hosszuak. Mekkora a 4. oldal?
10 pont

BOLYAI JÁNOS MEGYEI MATEMATIKAVERSENY feladatainak megoldása 1995/96.

A szakközépiskolák és a gimnáziumok 1. osztálya, a nyolcosztályos gimnáziumok 5. osztálya, a hatosztályos gimnáziumok 3. osztálya számára.

1., A már megtett és a még megteendő út legyen 2x illetve 3x (km).
10 km -t még megtéve a két út 2x+10 illetve 3x - 10 (km)
Ezek arányát írjuk 2x+10 = 6
3x - 10 = 5
Innen x = 13,75 (km), ami megfelel a feladat feltételeinek.

összesen 6 pont

2.,

A BCA Δ és a BFA Δ A csúcsra tartozó m'-

magassága közös, továbbá az A csúcsval szemközti

alapok aránya 2:1, így T_{ABFΔ} = \frac{1}{2} T_{ABCΔ}.

Az ABF Δ és a DEF Δ F csúcsra tartozó m

magassága közös, és az F csúccsal szemközti

alapok aránya 3:1, így T_{DEFΔ} = \frac{1}{3} T_{ABFΔ}.

Mindezekből T_{ABFΔ} = \frac{1}{6} T_{ABCΔ} = \frac{1}{6}

összesen 6 pont

3.,

Csabának nincs fiútéstvére, tehát leánytestvére lehet csak, Bea vagy Dóra lehet tesvére.
Andrásnak van fiútéstvére, aki csak Ernő lehet, mert Csabának nincs fiútéstvére.
Ernőnek leánytestvére is van, aki tehát Andrásnak is testvére.
Ennek a leánytestvérenek viszont két fiútéstvére van. Ez a lány Bea lehet, mert neki
két testvére van.
Csabának Dóra lehet a leánytestvére, mert ha Bea lenne, akkor Bea fiútéstvére
Csabának is fiútéstvére lenne, holott Csabának nincs fiútéstvére.
Tehát testvérek: András, Bea és Ernő, illetve Csaba és Dóra.

összesen 8 pont

4.,

Kati életkora biztosan kisebb, mint 1999 számjegyeinek összege, tehát 28, ezért
1952-nél később született.

Legyenek a születési év számjegyei 1, 9, a, b, így életkora 1980 - ban
1+9+a+b=10+a+b

A feltétel szerint 1900+10a+b+(10+a+b)=1980, azaz 11a+2b=70 (*)

Mivel b ≤ 9 2b ≤ 18, ezért a fenti egyenletből 52 ≤ 11a ≤ 70, azaz 5 ≤ a ≤ 6

A (*) egyenletből nyilván az a szám páros, így csakis 6.

Tehát Kati 1962 - ben született, és 1980 -ban 18 éves volt.

összesen 8 pont

5.,

Felírjuk a Pitagorasz tételét:
x^2 = a^2 + b^2, \quad b^2 + c^2 = 100

\quad c^2 + a^2 = 196, \quad d^2 + a^2 = 121

A második és negyedik összegéből leoronva a

harmadik egyenletet a^2 + b^2 = 25

Tehát a negyedik oldal 5 egység

összesen 10 pont