1. Andi és Bandi ikrek, azonos sebességgel futnak, illetve azonos sebességgel gyalogolnak (egymáshoz képest). Egyszer egy futóversenyen vettek részt. Andi a versenytáv felét futva, felét gyalogolva tette meg. Bandi a versenyzése időtartamának felében gyalogolt, felében futott. Ki ért be előbb a célba?

2. Egy 12 cm oldalhosszúságú, négyzet alakú papírlap fekszik az asztalon. Felénk néző oldala fehér, az asztallappal közvetlenül érintkező oldala fekete. Felhajtjuk a papírlap egyik sarkát úgy, hogy a négyzet felhajtott csúcsa arra az átlóra kerüljön, ami eredetileg átment rajta, és az így láthatóval vált fekete terület nagysága megegyezzen a le nem takart (látható) fehér terület nagyságával. Milyen messze van a felhajtott csúcs a hajtásvonaltól?

3. Egy edény és a benne levő víz együttes tömege 2000 gramm. Ha kiöntjük a víz 20%-át, akkor az edény és a benne levő víz együttes tömege az eredetinek 88%-ára csökken. Számítsa ki az edény tömegét!

4. Az x, y, z egész számoknak a következő feltételeket kell teljesíteni:

 \[\begin{align*}
 xyz-x &= 2005 \\
 xyz-y &= 205 \\
 xyz-z &= 25
 \end{align*}\]

 Vannak-e ilyen egész számok?

5. Egységnyi élhosszúságú kockákból egy nagyobb kockát építettünk, ragasztással. Ezután a nagy kockának néhány oldalapját befestettünk teljes egészében kékre, majd szétvágunk egységnyi élhosszúságú kiskockákra. A szétvágás után 45 darab festetlen kiskockát kaptunk. Mekkora volt a nagy kocka élhosszúsága, és hány oldalapját festettünk be?

6. Mely p valós paraméter értékére lesz az \(x \propto (1-p)x^2 - 2(2p+1)x - 4p - 1\) függvény legnagyobb helyettesítési értéke 8?
JAVÍTÓKULCS

1. Andi és Bandi ikrek, azonos sebességgel futnak, illetve azonos sebességgel gyalogolnak (egymáshoz képest). Egyszer egy futóversenyen vettek részt. Andi a versenytáv felét futva, felét gyalogolva tette meg. Bandi a versenyzése időtartamának felében gyalogolt, felében futott. Ki ért be előbb a célba?

Megoldás:

a) Mivel gyorsabban futunk, mint gyalogolunk,
b) Bandi nagyobb távolság megtételekor futott, mint gyalogolt,
c) hiszen ugyanakkora időtartamokat tett meg futva, mint gyalogolva.
d) Tehát Bandi több, mint fele távot tette meg futva,
e) ezért kevesebb időre volt szüksége összességében, mint Andinak.
f) Tehát Bandi ért előbb a célba.

Összesen: 6 pont
2. Egy 12 cm oldalhosszúságú, négyzet alakú papírlap fekszik az asztalon. Felénk néző oldala fehér, az asztallappal közvetlenül érintkező oldala fekete. Felhajtjuk a papírlap egyik sarkát úgy, hogy a négyzet felhajtott csúcsa arra az átört áturbó kerüljön, ami eredetileg átmint rajta, és az így láthatóvá vált fekete terület nagysága megegyezzen a le nem takart (láttható) fehér terület nagyságával. Milyen messze van a felhajtott csúcs a hajtásponktól?

Megoldás:

![Diagram](image)

a) Jó rajzot készít.

b) Mivel a felhajtott fekete háromszög területe megegyezik a megmaradó fehér rész, valamint a szaggatott vonallal határolt háromszög területével is,

c) ezért ennek területe a négyzet területének harmadrésze.

d) A fekete háromszög x oldalára tehát: \(\frac{x^2}{2} = \frac{144}{3} \).

e) \(x = \frac{12 \cdot \sqrt{2}}{\sqrt{3}} = 4\sqrt{6} \).

f) A felhajtott csúcs és a hajtásponal távolsága az x oldalú négyzet átlójának fele: \(\frac{\sqrt{2} \cdot x}{2} \).

g) Azaz \(4 \cdot \sqrt{3} \).

Összesen: 7 pont
3. Egy edény és a benne levő víz együttes tömege 2000 gramm. Ha kiőnjük a víz 20%-át, akkor az edény és a benne levő víz együttes tömege az eredetiknél 88%-ára csökken. Számítsa ki az edény tömegéit!

Megoldás:

a) Legyen az edény tömege x gramm, a benne levő víz tömege akkor $2000 - x$ gramm.

b) A kiőntés után a víz tömegének 80%-a marad az edényben $0,8 \cdot (2000 - x)$ gramm.

c) Az eredeti együttes tömeg 88%-a $2000 \cdot 0,88 = 1760$ gramm.

d) A feltétel szerint $0,8 \cdot (2000 - x) = 1760 - x$

e) $1600 - 0,8x = 1760 - x$

\[0,2x = 160\]

f) $x = 800$ gramm.

g) Tehát az edény tömege 800 gramm.

h) Ellenőrzés

Összesen: 8 pont

4. Az x, y, z egész számoknak a következő feltételeket kell teljesíteni:

$$xyz - x = 2005$$

$$xyz - y = 205$$

$$xyz - z = 25$$

Vannak-e ilyen egész számok?

Megoldás:

a) $xyz - x = 2005$, azaz $x \cdot (yz - 1) = 2005$

b) Tehát x osztója 2005-nek, így páratlan.

c) Hasonlóan $y \cdot (xz - 1) = 205$.

d) Tehát y osztója 205-nek, így páratlan.

e) Hasonlóan $z \cdot (xy - 1) = 25$.

f) Tehát z osztója 25-nek, így páratlan.

g) Ha x, y, z mindegyike páratlan, akkor pl. $xyz - x$ kifejezés páros, tehát nem lehet egyenlő 2005-tel.

h) Tehát nincsenek a feltételeknek eleget tevő egész számok.

Összesen: 8 pont
5. Egységnyi előhosszúságú kockákból egy nagyobb kockát építettünk, ragasztással. Ezután a nagy kockának néhány oldallapját befestettük teljes egészében kékre, majd szétvághuk egységnyi előhosszúságú kiskockákra. A szétvágás után 45 darab festetlen kiskockát kaptunk. Mekkora volt a nagy kocka előhosszúsága, és hány oldallapját festettük be?

Megoldás:

a) A nagy kocka nem lehet 4x4x4-esnél kisebb, mert akkor összesen nem állna 45 kis kockából.

b) Nem lehet 5x5x5-ösnél nagyobb sem, mert akkor a külső, egységnyi vastagságú réteg lebontása után maradó, biztosan festetlen kis kockák száma legalább 64 lenne.

c) Ha a kocka 4x4x4-es, akkor összesen 64 kis kockából áll, tehát ezek közül 64 – 45 = 19-et festettünk be.

d) Egy lap befestése 16 kiskocka befestését jelenti, két lapé viszont legalább 28-at,

e) így nem keletkezhet pontosan 19 befestett kiskocka.

f) Tehát a kockának mindenképpen 5x5x5-ösnek kell lennie, ha a feladatnak van megoldása.

g) A „belső rész” 27db festetlen kiskockából áll.

h) A hiányzó 18 festetlen kiskocka két szemközti festetlen oldallaphoz tartozhat.

i) Tehát az 5 egység előhosszúságú kockának (két szemközti oldallap kivételével) négy oldallapját festettük be.

Összesen: 9 pont
6. Mely \(p \) valós paraméter értékére lesz az \(x \propto (1 - p)x^2 - 2(2p + 1)x - 4p - 1 \) függvény
legnagyobb helyettesítési értéke 8?

Megoldás:

a) Ha \(1 - p < 0 \), akkor \(1 < p \), a függvénynek van maximuma.

b) A másodfokú kifejezést teljes négyzeté alakítva a függvény-transzformációkról
 tanultak alapján megállapíthatjuk a függvény szélsőértékét.

c) Tehát alakítsuk teljes négyzetté a kifejezést!

\[
(1 - p)\left[x^2 - \frac{2(2p + 1)}{1 - p} x \right] - 4p - 1 =
\]

d) \[
= (1 - p)\left[\left(x - \frac{2p + 1}{1 - p} \right)^2 - \left(\frac{2p + 1}{1 - p} \right)^2 \right] - 4p - 1 =
\]

e) \[
= (1 - p)\left(x - \frac{2p + 1}{1 - p} \right)^2 - \frac{(2p + 1)^2}{1 - p} - 4p - 1
\]

f) Ha a függvény maximumértéke 8,

\[
- \frac{4p^2 + 4p + 1}{1 - p} - 4p - 1 = 8
\]

\[
g) 4p^2 + 4p + 1 - 4p(p - 1) - (p - 1) = 8 \cdot (p - 1)
\]

h) \[
4p^3 + 4p + 1 - 4p^2 + 4p - p + 1 = 8p - 8
\]

i) \(-p + 2 = 8\)

j) \(10 = p\)

k) Tehát \(p = 10 \) esetén a függvény legnagyobb helyettesítési értéke 8.

l) Ellenőrzés: \(x \propto -9x^2 - 42x - 41 \)

Zérushelyek: \(x_{1,2} = \frac{-7 \pm 2\sqrt{2}}{3} \)

Szélsőértékhely: \(-\frac{7}{3} \)

\[
f\left(-\frac{7}{3} \right) = 8
\]

Összesen: 12 pont